19.11.2020 19:26
    Поделиться

    Летучие мыши - уникальные по "физике" существа

    … не так уж и просто
    Потому что сначала летучую мышь надо поймать. А природа снабдила этих зверьков богатым арсеналом физических "девайсов", с помощью которых летучие мыши сами успешно охотятся. И столь же успешно скрываются от желающих поохотиться на них. Этот текст - лирика про физику летучих мышей.

    Сова, погром, погасшая свеча и шестое чувство

    XVIII век. Тёплая итальянская ночь. При свете свечи сидит и размышляет о сущности природы Ладзаро Спалланцани. "Самый выдающийся экспериментатором из когда-либо родившихся на земле" - так говорил о нём Луи Пастер.

    Подозреваем, что Пастер полюбил Спалланцани за опыт, доказывающий невозможность самозарождения жизни в бараньем бульоне.

    От полёта научной мысли Спалланцани оторвала сова. Она влетела в окно, взмахом крыла погасила свечу, начала метаться по комнате и устроила погром. Нормальный человек разозлился бы на такое вторжение. А учёный удивился. Почему сова, казалось бы, ночной хищник, сшибла почти всё, что могло упасть, а регулярно и столь же случайно залетающие в комнату летучие мыши ведут себя аккуратно…

    Так гласит научная легенда. Как бы то ни было, Спалланцани обратил свою интеллектуальную энергию на изучение именно летучих мышей, а не сов. Правда, делал он это не самым гуманным способом: выжигал им сетчатку, удалял глазные яблоки - и отпускал на волю. Потом он снова ловил зверьков, ослеплённых и здоровых, и сравнивал содержимое их желудков.

    Оказалось, что у животных "из обеих групп" добыча была примерно одинаковой и по объёму, и по составу - всё те же насекомые. Отсутствие зрения никак не сказалось на рационе. Получалось, что у летучих мышей есть какое-то иное чувство, которое позволяет им ориентироваться и охотиться.

    Тогда Спалланцани переключился на уши рукокрылых - стал заливать их воском. После такой пытки они начинали вести себя как совы-погромщицы. Зверьки были неспособны не то что охотиться, а даже нормально вылететь из рук экспериментатора. "Без ушей они не видят!" - заключил учёный.

    Примерно в то же время женевский хирург Луи Жюрин попробовал воспроизвести опыты Спалланцани. Только более изощрённо: руки опытного хирурга способны не только залить уши воском, но и лишить слуха с помощью медицинского оборудования. Так Жюрин и поступил. Результат получил тот же самый. Он же описал, что в полёте здоровые летучие мыши постоянно поворачивают уши. Но как они ими "видят", оставалось непонятно.

    Учёные конца XVIII века были убеждены, что эти животные наделены неким чувством, которым люди не обладают. А каким именно, выяснилось только тогда, когда в арсенале физики появились локаторы, способные улавливать недоступные нашим ушам высокочастотные акустические сигналы.

    Не мыши единые

    Эхолокацию открыли в XX веке. В начале столетия профессор физики из Гарварда Г. В. Пирс изобрёл пьезоэлектрический датчик, преобразующий ультразвуковые волны в слышимый диапазон частот. В 1930-х с профессором связался студент всё того же Гарварда Дональд Гриффин, и вместе они впервые "услышали" ультразвук, который издают летучие мыши во время полёта.

    Чуть позже, в 1938 году, Пирс и Гриффин описали явление эхолокации. Зверёк издаёт сигнал, который распространяется вокруг и отражается от физических препятствий. Сигнал возвращается к животному с задержкой, его "ловят" слуховые рецепторы, а затем мозг по разнице во времени рассчитывает расстояние до объекта, от которого сигнал отразился. Летучая мышь издаёт несколько сотен таких сигналов в секунду, и в голове у неё в итоге выстраивается 3D-модель окружающего пространства.

    Но не только рукокрылые используют эхолокацию. В 1950-х такую способность обнаружили у зубатых китов (к ним относятся, например, дельфины); рыб, на которых зубатые киты охотятся; многих ночных млекопитающих; а совсем недавно - у людей. Эксперименты показали, что если поставить перед слепым человеком в пустой комнате поглощающий звук объект, то, издавая щелчки языком и прислушиваясь к своим ощущениям, испытуемые быстро находят этот объект.

    Но всё же летучие мыши лучше всех приспособлены к навигации по ультразвуку. Их голосовой аппарат может издавать сигналы разной частоты и длительности: одни лучше подходят для охоты, другие - для навигации. Ротовая полость у этих животных устроена как параболическое зеркало. Изменяя её кривизну, они могут выдавать узконаправленный пучок ультразвука (опять же - удобно для охоты) или широко разлетающийся сигнал (удобнее при навигации). А ещё у летучих мышей есть крупные уши с развитой мускулатурой, чтобы быстро-быстро их поворачивать и улавливать отражённые сигналы с разных направлений.

    Громкость сигнала у некоторых рукокрылых на расстоянии 10 см от тела составляет 130 децибел, что является абсолютным рекордом среди животных. Не оглохнуть от собственных писков им помогают специальные "заслонки" в ушах, способные закрываться и открываться около 500 раз в секунду.

    У человека шум в 130 дБ уже вызывает болевые ощущения, а выше 140 дБ - контузию.

    "Эхолокация" головного мозга

    Ультразвуковое излучение люди научились использовать позже рентгеновского. В 1941 году австрийский невролог Карл Дюссик с помощью "гиперфонографии" (как он назвал свой метод) обнаружил у пациента опухоль мозга. Через несколько лет выяснилось, что за опухоль он принял отражение ультразвука от костей черепа, но метод уже пользовался популярностью.

    В 1950-е годы в США и СССР активно велись разработки по применению ультразвука в самых разных сферах, и первые массовые аппараты, очень похожие на современные, появились в Штатах уже в 1960-х. В Советском Союзе аппараты УЗИ стали повсеместно применять в 1980 х.

    В медицинских целях обычно используют ультразвук в частотном диапазоне от 1 до 10 МГц: такие волны могут проникать в толщу тканей организма. Животные же "работают" на более низких частотах. Верхний предел слуха здорового человека - 20 кГц. Летучие мыши для эхолокации используют звуки в диапазоне 20-100 кГц (и некоторые люди слышат самые низкочастотные из их сигналов). Чемпионами по слуху можно считать дельфинов: они слышат звуки частотой до 150 кГц.

    Не ультра

    Способность слышать ультразвук можно назвать суперспособностью. Усатая летучая мышь Pteronotus parnellii с её помощью отличает насекомых, быстро машущих крыльями, от тех, что крыльями машут медленно. На основе этой информации она может сделать вывод, какая из жертв крупнее, и не тратить силы на мелкую сошку.

    В акустическом диапазоне летучие мыши тоже слышат уверенно. Без этого никак. Да, эхолокация незаменима при ночной охоте на летающих насекомых, но если жертва копошится в лесной подстилке или прячется на нижней стороне листа, то ультразвук просто отражается от преграды и не даёт никакой информации об объекте. Тут выручают стандартные чувства.

    Что и говорить, уши-локаторы и продвинутые звуковые анализаторы делают слух мышей гораздо более чутким по сравнению с человеческим. Правда, как выяснили учёные из Панамы, в условиях городов с их шумовым загрязнением рукокрылые обычным слухом почти не пользуются, отчего меняется и их охотничье поведение.

    Выяснилось это в ходе необычного эксперимента, результаты которого опубликовал один из ведущих научных журналов - Science. Бахромчатогубым листоносам, которые обычно охотятся на лягушек, предложили на выбор три модели. Первая проигрывала лягушачью песнь и раздувала горло, вторая статично квакала, а третья раздувала горло, не подавая голоса. Учёные при этом замеряли время до начала охоты и от её начала до обнаружения жертвы, регистрировали попытки использовать ультразвук и учитывали, какую модель выберут испытуемые. Одну серию экспериментов проводили в тишине, другую - в шуме.

    В тишине листоносам потребовалось меньше времени, чтобы приступить к охоте, а сам процесс длился столько же, сколько и в шумных условиях. При этом в тишине мыши меньше пользовались эхолокацией и вдвое чаще выбирали статичную модель, издающую звуки. Исходя из этого, учёные сделали вывод, что в тишине бахромчатогубые листоносы больше ориентируются на обычный слух, а при шуме - на эхолокацию.

    А ещё у них руки большие

    Помните экспериментатора Спалланцани и его женевского коллегу-хирурга? От их работ до открытия эхолокации, казалось, было полшага. Подключить к работе больше специалистов из разных областей - и УЗИ, возможно, появилось бы на столетие раньше!

    Исследование "шестого чувства" застопорилось из-за авторитетного палеобиолога Жоржа Кювье, современника Спалланцани и Жюрина. Их эксперименты кажутся жестокими и даже несколько дикими не только сейчас, в XVIII веке на это обратил внимание Кювье. А ещё он выдвинул гипотезу, что летучие мыши ориентируется с помощью рук.

    Якобы они интенсивно машут крыльями и тонкой, натянутой между пальцами кожей, которая и образует крыло, улавливают отражения колебаний воздуха от препятствий. (Кстати, у рыб аналогичный механизм действительно есть и работает: они чувствуют возмущения воды всем телом с помощью боковой линии.) И эта ошибочная теория доминировала в науке следующие полтора столетия.

    Хотя не такая уж и ошибочная. Осязание у летучих мышей действительно развито гораздо лучше, чем у людей. Помимо классических осязательных телец в их арсенале есть вибриссы и чувствительные волоски, которыми усеяны летательные перепонки и большие ушные раковины. И при полёте осязание играет у рукокрылых немалую роль. Учёные пробовали запускать ослеплённых зверьков в специальные экспериментальные комнаты, где были натянуты тонкие и прочные нити. И что же? Даже в этих сложных условиях мыши успешно корректировали свой полёт вдоль нитей, почти не путаясь в них и не задевая окружающие предметы.

    Где пульсирует кровь

    Огромные уши и "кожаные крылья" выглядят малопривлекательно. Вдобавок их обладатели активны исключительно ночью, а днём спят вверх ногами, завернувшись в те самые жутковатые крылья, - ничего удивительного, что во многих традиционных культурах сложился отнюдь не самый положительный образ летучей мыши. На самом деле они, конечно, никакие не злые духи, заманивающие усталых путников в болота, чтобы высосать из них остатки жизненных сил. И не приспешники графа Дракулы. Но устойчивая ассоциация с вампирами возникла не на пустом месте.

    Из 1300 видов рукокрылых лишь 3 действительно питаются кровью: вампир обыкновенный, вампир белокрылый и вампир мохноногий. Эти три вида и составляют подсемейство вампировых в семействе листоносых рукокрылых. Повстречаться с ними можно лишь в тропиках и субтропиках Нового Света (ну, или если кто-то привезёт их оттуда).

    Исследователи считают слова "вампир" и "упырь" этимологически родственными, уходящими корнями в славянские языки. Их использовали в мифологии для обозначения полумертвецов или мертвецов, ведущих ночной образ жизни и иногда принимающих облик летучей мыши.

    В западноевропейских языках слово "вампир" в письменных источниках появилось лишь в 1732 году. А слово "вурдалак" в том же значении впервые употребил А. С. Пушкин в 1836 году в одноимённом стихотворении. Тогда это был неологизм, которые впоследствии прочно укрепился в языке.

    Отличие в способе питания в первую очередь отразились на арсенале "девайсов", которыми эволюция оснастила зверьков. Вампиры напоминают палубные истребители, оснащённые чувствительными инфракрасными детекторами.

    Поясним. У вампировых на кончике носа, больше напоминающего пятачок, расположены специальные инфракрасные рецепторы. Таких нет даже у Халка и Капитана Америки, что уж говорить об обычных людях! С помощью органов слуха, чувствительность которых сдвинута в область низкочастотных звуков, вампиры находят спящую теплокровную жертву. Далее инфракрасные рецепторы по температуре определяют на поверхности тела участок, где пульсирующий сосуд расположен близко к коже.

    Саспенс закончился, начинается экшен. С помощью острых клыков вампир прокалывает кожу и начинает активно слизывать вытекающую из раны кровь. В это время он максимально сосредоточен и следит, чтобы жертва ничего не почувствовала и продолжала спокойно спать.

    Кровь богата белками, но бедна основными источниками энергии - углеводами. Поэтому крови надо выпить как можно больше. Для этого нужно, во-первых, чтобы она вытекала из раны как можно дольше, а во-вторых, иметь вместительную ёмкость для сбора.

    С первой задачей помогает справиться коктейль ферментов, который вампиры впрыскивают во время укуса в рану. Эти ферменты препятствуют свёртыванию крови (как гепарин из слюнных желез пиявок), из-за чего рана дольше кровоточит. Одному из ферментов учёные дали говорящее название дракулин, а на основе другого создали лекарственный препарат десмотеплазу, помогающий, например, при лечении инсульта.

    В решении второго вопроса эволюция тоже подсобила - снабдила вампиров эластичным желудком, способным увеличиваться в несколько раз. После 30-60 минут питания 30-граммовый вампир может разъесться до 70 грамм.

    Сытый вампир напоминает раздувшегося комара - и тут могут возникнуть проблемы со взлётом. Перевес как-никак, набрать скорость, взлетая с поверхности, будет непросто. Но и тут эволюция не бросила в беде - одарила пружинистыми ногами, оттолкнувшись которыми зверёк почти мгновенно набирает скорость до 2 м/с. Прямо как истребитель, который запустили с авианосца при помощи катапульты. Эти же ноги-катапульты зверьки пускают в ход, если жертва внезапно проснулась и решила не делиться своей кровью с кем попало.

    Хоть в чём-то не круче людей

    Развитой эхолокации, ногам-катапультам, чуткому слуху и осязанию мы можем лишь позавидовать. Но летучие мыши расплатились за эти суперспособности и девайсы зрением и обонянием. Их эволюционная цена хорошо видна, если сравнивать летучих мышей с кузенами по отряду рукокрылых - крыланами. Те преимущественно растительноядны и по жизни больше полагаются на зрение и обоняние. Тогда как летучие мыши предпочитают мясо, а используют преимущественно слух (включая эхолокацию) и осязание. Эта разница находит отражение и в геноме.

    Китайские учёные секвенировали геном двух самых продвинутых в эхолокации летучих мышей: гималайского листоноса (Hipposideros armiger) и китайского подковоноса (Rhinolophus sinicus). Выяснилось, что многие связанные со зрением гены у них превратились в неспособные к экспрессии псевдогены. Похожая ситуация с генами, отвечающими за обоняние.

    Причём начались эти эволюционные преобразования ещё у общего предка всех летучих мышей. А на гены, связанные со слухом, постоянно действовал положительный отбор. В эволюционном прошлом крыланов даже трендов подобных не было.

    Почему за эхолокацию пришлось расплачиваться зрением и обонянием, почему нельзя оставить всё? Учёные-эволюционисты предполагают, что причины энергетические. Обслуживание нейронов и рецепторов - дело затратное. И ресурсы распределяются строго в те области, где они наиболее востребованы.

    ***

    Вселенную можно представить как RPG-игру с безграничным открытым миром. Как минимум одна из его локаций - планета Земля - населена многообразными существами. Эти создания воспринимают физический мир посредством ощущений и эту же физику используют для коммуникации друг с другом. В зависимости от среды обитания у разных существ прокачиваются разные наборы навыков и качества. Одним нужно слышать ультразвук, чтобы в темноте со сверхточностью определять позицию пролетающей мимо жертвы, а другим необходимо обоняние и чувство отвращения, чтобы не есть чужие фекалии и не заражаться холерой. И в этой игре работает непопулярное ныне правило - каждому по потребностям.

    Гаджеты животного мира

    Магнитный радар. Птицы. А ещё бактерии, многие беспозвоночные, рыбы, амфибии, рептилии и млекопитающие. Одним "магнитное чутьё" помогает выбрать пригодную для обитания среду, другим запомнить координаты "дома", третьим найти место для размножения, а четвёртым - для трансконтинентальных миграций.

    Перчатки для альпинизма. Гекконы. На 1 мм2 подушечки пальца геккона находится до 14 000 нановолосков, каждый из которых на кончике расщеплён на 400-1000 волокон. Такие "перчатки" позволяют рептилиям лазать по любым, даже абсолютно гладким поверхностям в любом положении. Хоть вверх головой.

    УФ-зрение. Некоторые насекомые. Обслуживает специфические нужды насекомых-опылителей - позволяет увидеть "разметку" цветков. В картине мира пчёл и дневных бабочек всё красное выглядит чёрным, а гладкое - полосатым. Так можно разглядеть "подсказки" растения, как усесться в его цветок, чтобы добраться до нектара. И попутно измазаться в пыльце.

    Вибрационный гироскоп. Насекомые отряда двукрылых. У всех насекомых есть две пары крыльев, но у двукрылых (к ним относятся слепни, оводы, комары, мухи, плодовые мушки, мошки и др.) вторая пара превратилась в жужжальца. С физической точки зрения это вибрационные гироскопы, которые нужны для стабилизации полёта. Подобными устройствами оснащены стабилизаторы цифровых камер, смартфонов и квадрокоптеры.

    Поделиться